首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   10篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   18篇
  2013年   15篇
  2012年   13篇
  2011年   12篇
  2010年   15篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   10篇
  2004年   5篇
  2003年   9篇
  2002年   12篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1982年   4篇
  1967年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
1.
2.
3.
Subsoil contains more than half of soil organic carbon (SOC) globally and is conventionally assumed to be relatively unresponsive to warming compared to the topsoil. Here, we show substantial changes in carbon allocation and dynamics of the subsoil but not topsoil in the Qinghai‐Tibetan alpine grasslands over 5 years of warming. Specifically, warming enhanced the accumulation of newly synthesized (14C‐enriched) carbon in the subsoil slow‐cycling pool (silt‐clay fraction) but promoted the decomposition of plant‐derived lignin in the fast‐cycling pool (macroaggregates). These changes mirrored an accumulation of lipids and sugars at the expense of lignin in the warmed bulk subsoil, likely associated with shortened soil freezing period and a deepening root system. As warming is accompanied by deepening roots in a wide range of ecosystems, root‐driven accrual of slow‐cycling pool may represent an important and overlooked mechanism for a potential long‐term carbon sink at depth. Moreover, given the contrasting sensitivity of SOC dynamics at varied depths, warming studies focusing only on surface soils may vastly misrepresent shifts in ecosystem carbon storage under climate change.  相似文献   
4.
Metabolomics - The study of lipoprotein metabolism at the population level can provide valuable information for the organisation of lipoprotein related processes in the body. To use this...  相似文献   
5.
The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.  相似文献   
6.
7.
8.
The composition of phenols and other aromatic compounds in organic and mineral soil horizons and their respective source vegetation from different climatic zones of the Canadian Prairies were analyzed using CuO oxidation and gas chromatography-mass spectrometry (GC-MS) to investigate the stage of lignin degradation. Parameters based on the CuO oxidation products were calculated for the soils and corresponding vegetation to determine the lignin sources and to monitor the lignin degradation. In addition to the widely used lignin monomer parameters, parameters resulting from lignin-derived phenolic dimers are used for the first time to assess lignin degradation in soils. The composition of lignin-derived phenols (S/V, C/V) in soil closely matches the composition observed in their respective source plants (grass, Aspen, Pine) reflecting the preservation of characteristic lignin patterns in soils. Degradation parameters based on lignin phenols and benzenes derived from tannins or other phenolic biomolecules indicate a progressive degradation from the vegetation to the soil horizons. In addition to commonly used lignin monomer indicators, parameters based on the lignin dimers are applied. Lignin degradation is found to be lowest in the Pine forest, intermediate in the grassland soils and highest in the Aspen-grassland transition soil. Degradation parameters based on non-lignin aromatic derivatives (3,5-dihydroxybenzoic acid, benzenepolycarboxylic acids) demonstrate a similar trend. The lignin from samples in the cooler climate (Black Chernozems) is observed to be more oxidized than in the soils from the warmer climate (Brown Chernozems) suggesting that abiotic processes may be in involved in the alteration of lignin and other phenolic biomolecules in soils. The results indicate that the comparative analysis of CuO oxidation products of soils and source vegetation is a valuable tool to assess the sources and degradation of lignin in soils.  相似文献   
9.
Some non-pathogenic trypanosomatids maintain a mutualistic relationship with a betaproteobacterium of the Alcaligenaceae family. Intensive nutritional exchanges have been reported between the two partners, indicating that these protozoa are excellent biological models to study metabolic co-evolution. We previously sequenced and herein investigate the entire genomes of five trypanosomatids which harbor a symbiotic bacterium (SHTs for Symbiont-Haboring Trypanosomatids) and the respective bacteria (TPEs for Trypanosomatid Proteobacterial Endosymbiont), as well as two trypanosomatids without symbionts (RTs for Regular Trypanosomatids), for the presence of genes of the classical pathways for vitamin biosynthesis. Our data show that genes for the biosynthetic pathways of thiamine, biotin, and nicotinic acid are absent from all trypanosomatid genomes. This is in agreement with the absolute growth requirement for these vitamins in all protozoa of the family. Also absent from the genomes of RTs are the genes for the synthesis of pantothenic acid, folic acid, riboflavin, and vitamin B6. This is also in agreement with the available data showing that RTs are auxotrophic for these essential vitamins. On the other hand, SHTs are autotrophic for such vitamins. Indeed, all the genes of the corresponding biosynthetic pathways were identified, most of them in the symbiont genomes, while a few genes, mostly of eukaryotic origin, were found in the host genomes. The only exceptions to the latter are: the gene coding for the enzyme ketopantoate reductase (EC:1.1.1.169) which is related instead to the Firmicutes bacteria; and two other genes, one involved in the salvage pathway of pantothenic acid and the other in the synthesis of ubiquinone, that are related to Gammaproteobacteria. Their presence in trypanosomatids may result from lateral gene transfer. Taken together, our results reinforce the idea that the low nutritional requirement of SHTs is associated with the presence of the symbiotic bacterium, which contains most genes for vitamin production.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号